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1 Abstract

Glioblastoma (GBM) is an aggressive cancer in the brain that has a high associated mortality rate.
Understanding the cellular interactions within the GBM tumor environment can allow researchers
to develop new therapies to more effectively treat this cancer. We developed a graph convolutional
neural network (GCN) trained on gene expression data from patients with GBM. The cells from
these patients were treated with Chi3ll, a protein highly expressed in GBM that makes the cells
less responsive to therapeutics, and then the surprisal analysis framework was used to extract
information about cell state energy from the data. Using this data, we trained a GCN to predict
the cell state energy given the gene expression data, and to learn the underlying graph structure of
the gene-gene interactions. Our model received consistent testing AUPRC scores across many runs.
We visually modeled the gene-gene interactions to understand how the underlying graph structure
changed after training, and analyzed the top genes relevant to the model predictions. Furthermore,
we conducted a gene set enrichment analysis on the most important genes, and found correlations
between the pathways and the dataset. We aim to further analyze the robustness of the model
and apply existing interpretation methods to better understand the predictions. Ultimately, these
findings can better inform biological research and contribute to developing novel GBM therapies.

2 Introduction

Glioblastoma (GBM) is a fast-growing and aggressive cancer that can occur in the brain or spinal
cord. GBM accounts for nearly 50 percent of all malignant brain tumors, making it the most
common primary malignant brain tumor in adults. Currently, the average length of survival for
GBM patients is estimated at around 8 months and the five-year survival rate for GBM patients
is less than 7% [I7]. Standard treatment of GBM is currently surgical resection followed by ra-
diation. However, due to the high presence of chemotherapy-resistant glioma stem cells (GSCs),
tumor recurrence is near universal [18]. Research into understanding the cellular mechanisms and
interactions within the GBM tumor environment and among GSCs is imperative to develop new
therapies to effectively treat this cancer.

Gene expression data, specifically single cell RNA sequencing (scRNA-seq) data, provides a cru-
cial avenue to understanding cellular responses [9]. This data enables determining gene expression
levels in individual cells. In addition to gene expression data, understanding the cellular states
within the cancerous environment is important to reveal cellular dynamics and interactions. The
free energy of a cell indicates how much potential it has in transitioning between different states,
which reveals information regarding cell dynamics. This can lead to further insights into biological
phenotypes, such as understanding the spatial distributions of GSCs, the mechanisms of cellular
interactions, and cell responses to drug treatments [13].

Collaborators in Dr. Nikos Tapinos’s lab worked to create a novel data source from four patients
with GBM. The data contains information about gene expression levels, as well as unique informa-
tion about cell state energy obtained using surprisal analysis. No prior work has been conducted
using this data, providing a rich data source to understand cellular and genetic interactions.

In this work, we propose a novel method of understanding and modeling the GBM cellular
environment using graph convolutional neural networks (GCN) and free energy landscapes. We
trained a GCN to learn the underlying graph structure of the gene interactions, and then learned
the gene-gene interactions most important to predicting the cells energy state.

In summary, we make the following contributions: (1) We propose a GCN that is able to
learn the edge weights through training; (2) we perform a robustness analysis to evaluate the



certainty of the predictions; (3) we analyze the genes that appear to be most relevant, as well as
their downstream processes. The code is publicly available at https://github.com/rsinghlab/GBM-
GNN.gitl.

Ultimately, this project has the potential to impact the field of personalized medicine as well
as cancer research. By developing a method that uses a patient’s unique cellular environment to
understand the specific interactions of their cells and the energetic states, researchers understand
the specific genes and mechanisms responsible for cancerous proliferation. This can enable targeted
therapies downstream, with the potential to impact how clinicians approach treating GBM.

3 Background

3.1 Surprisal Analysis

The dataset used in this paper contains information about gene expression levels, as well as unique
information about cell state energy. It was obtained using surprisal analysis, defined as:
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Where X°(t) is the balanced state or prior probability, and X (¢) is the mutated state. This
expression is equivalent to the sum over the constraints, which is a measure of the deviation from
the balanced state, ranked by the Lagrange multipliers. G (t) is the value of the constraint « for
the event ¢ [16]. This measurement is useful when measuring the expression level in cancerous vs
normal tissues. Furthermore, surprisal analysis allows us to look at patient-specific information
in relation to the free energy landscape. From this analysis, two values are derived: lambda and
g values. The lambda values indicate the importance of a cell in a certain process state (from
steady state to high entropy), and the g values indicate the importance of a gene in a process. For
the purposes of the experiments run in the paper, we only consider steady state (process 0) and
processes 1-2. Process 3 and 4 are ignored due to a high class imbalance.

surpisal = In <

4 Related Works

As this specific GBM data is novel, there is no existing literature on using it within a machine
learning framework. Furthermore, there has been no prior work using machine learning methods
to make predictions based off of surprisal analysis.

4.1 Surprisal Analysis of GBM data

Prior work in revealing the role of cell state energy in understanding biological phenomenon has
provided a rich source of new data, yet there has been limited work in the area.

Data about cellular energetic states can lead to further insights into their biological phenotypes,
such as understanding the spatial distributions of GSCs, the mechanisms of cellular interactions, and
cell responses to drug treatments. Kravchenko-Balasha, 2020 found that an aggressively growing
tumor for patients with GBM is not in a balanced state. Surprisal analysis techniques consider the
environmental and genomics constraints that prevent this cellular environment from reaching the
balanced state. Therefore, the surprisal analysis method takes as input the gene expression levels
of the cancerous cells and extracts the expected distribution of the expression levels in the balanced
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state. It then compares this expected distribution to the observed distribution to understand the
deviation [13].

Additional work using surprisal analysis to understand GBM found that, when comparing eight
GBM tumors, each had a different distribution of cellular processes in the unbalanced state. The
authors proposed that the identification of specific constraints on each unique GBM tumor suggested
tumor-specific therapeutics may be needed to return the tumors to their balanced state [14].

More generally, surprisal analysis can allow for advancements in the field of personalized
medicine. Inter-tumor heterogeneity negatively impacts the effectiveness of treatment by clini-
cians as patients’ unique cellular environments react differently. Therefore, using surprisal analysis
to understand a patients individual cellular environment can allow for more effective therapeutic
treatments and therefore improved treatments for GBM [13].

Alkhatib et al., 2022 tested this approach in the lab. They used surprisal analysis techniques
to create an individualized assessment of tumor composition to create a customized treatment
approach. They were able to locate distinct subpopulations that were evolving within the tumor in
response to therapeutics, and map them. Using these mappings, they created a guided drug cocktail
and found that it significantly enhanced tumor response to therapeutics and lowered occurrence of
regrowth [1].

These findings motivated the strong potential of surprisal analysis to drive cancer therapeutics
at a personalized level.

4.2 GNNs to Model Genetic Data

Recent works have studied the relevance of GNNs and graph convolutional network (GCNs) to
model genetic datasets. Wang et al., 2021 developed a GNN (titled scGNN) that formulated the
cell-cell relationships in a graphical structured to model heterogeneous gene expression patterns.
Then, they integrated multi-modal autoencoders for gene imputation and cell clustering. Gene
imputation aims to solve the issue that arises in scRNA-seq data where the expression values for
many genes are marked as zero by recovering (guessing) the correct values [19].

Further work by Yuan and Bar-Joseph, 2020 created a GCN (titled GCNG) to encode the
spatial information of cells as a graph and combine it with expression data. Their model is able to
propose pairs of extracellular interacting genes, as well as be used for downstream analysis in areas
such as functional gene assignment [25].

Similar to the scGNN paper, additional researchers developed sigGCN for cell classification
that combines a GCN and a neural network to reveal gene interaction networks. They found that
combining prior knowledge about gene-gene interactions with gene expression data using a GCN
allowed them to extract many important features and improve upon existing SOTA methods for
cell classification performance [20].

Motivated by these results, we modeled our approach as a GCN to efficiently extract features
from the gene-gene interactions and gene expression data for cell energy state classification.

5 Methods

5.1 Graph Convolutional Network

A graph convolutional network (GCN) is an approach for semi-supervised learning on graph-
structured data [ITI]. GCNs are advantageous as they can utilize the power of convolution even
for cases with sparse spatial relationships. Instead of encoding data as a 2D matrix or 1D vector,
GCNs encode the data as a graph structure to extrapolate relationships between the samples [22].



This graph structure, which is represented as a normalized interaction matrix, is convolved with
the node features in the graph. Therefore, the GCN can utilize information inherent to each node
as well as the relationships among the nodes.
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Figure 1: This is an overview figure of the graph initialization process. A graph was created for
each cell, and each node in the graph is a gene where the node features are the gene expression
value for that cell. The edges are initialized using the g value correlation matrix.

We formulate the graph as follows. There is one graph generated for each cell, where within each
graph every gene is a node. Each node has a corresponding node feature of the gene expression
value for that specific gene and cell. Each process is treated as a separate model. For a given
process, the G value matrix is subsetted and constructed into a cosine similarity matrix. It is then
normalized and bounded between -1 and 1, thus becoming a correlation matrix. This correlation
matrix becomes the bases for the edge connections and edge weights. In this regard, the initial
graph is a fully connected graph, where the weight between two nodes is the g value correlation
value. Lastly, the graph-wise label is the lambda value for that specific cell, given the current
process. The label is binarized to 0 or 1 depending on whether a cell is in the process or not. See
Figure [1] for a visual overview of the graph initialization process.

The goal of training was to learn how to predict the cell state given the graph structure.
Additionally, the model learned the edge weights as it trained, revealing the most important gene-
gene interactions resulting in the predictions.

5.2 Graph Visualization

To understand the most important gene-gene interactions driving the cell process prediction, we
plotted a subgraph before and after training. Using the Python NetworkX package, we first ex-
tracted the 100 highest edge weights from the initialized graph. These edge weights are initially
based on the g value correlation matrix. The top 100 weights were then normalized between 0-1
and then the top 50 edge weights were taken. Edge weights are colored by value, with a darker



edge color representing a higher edge weight and therefore more importance. The graph nodes,
representing genes, are sized according to their degree.

5.3 Model Architecture

The GCN consisted of two Graph Convolutional layers from the Pytorch Geometric codebase [5].
In addition to passing in the graph structure to the layers, the edge weights - with a sigmoid
activation function applied to them - were also passed in. The edge weights, initialized to the g
value correlation matrix, were passed into the model as a trainable parameter. Following the two
convolution layers, a global mean pool was applied as we are doing graph-wise classification (rather
than node-wise classification). Finally, a dense layer with softmax was applied.

The loss function used was Cross Entropy loss, which is summarized by the following

n
Log =— Zti log(p;), for n classes
i=1

where t; is the truth label, and p; is the softmax probability for the i** class. To report training
metrics, I computed the area under Precision-Recall (PR) curve (AUPRC), which is a useful per-
formance metric for imbalanced data. The data we used was imbalanced, as for a given process
there is not guaranteed to be — and often not — an equal number of cells in the process compared
to not in the process.

The code was written using the Pytorch framework. The graphical representation was con-
structed using Pytorch Geometric. The models were run using the computational resources and
services at the Center for Computation and Visualization at Brown University.

6 Experiments

6.1 Data

The data used for this project was collected by collaborators in Dr. Nikos Tapinos’s lab. The
data is from four patients with GBM. The glioma stem cells in these patients were treated with
Chi3ll, a secreted protein highly expressed in GBM. This protein is a modulator of GSC cellular
states and reduces transition probabilities of GSCs towards terminal cellular states [6]. The data
contained single cell gene expression levels for all four patients, and data regarding cell state energy
was obtained using surprisal analysis. The data was post-processed to remove all mitochondrial
and ribosomal genes.

Not all of the cells were treated, resulting in two datasets: control and treated. Therefore, in
total we trained six models, one for all combinations of each process (0-2) and control vs treated.

6.2 Model Performance

The experiments outlined in the following sections are based off of these hyperparameter tuning
results. All experiments were run on one patient’s data, gh2. Each process was ran as a separate
model. In total, we trained six models.

Given these results, we used a learning rate of 5e-4 and a hidden layer size of 20 for all models
in process 0 and 1. For the for the process 2 control model, the AUPRC score for a hidden size of
100 with a learning rate of 5e-4 was 0.6806, which is marginally different than the best AUPRC
reported above. Similarly, for the process 2 treated model, when hyperparameter tuning was run
the testing AUPRC for a hidden size of 100 with a learning rate of 5e-4 was 0.6977. Therefore,



” Process Model Type Testing AUPRC Hidden Layer Size Learning Rate ”

0 Control 1.0 20 0.0005
0 Treated 1.0 20 0.0005
1 Control 0.8238 20 0.0005
1 Treated 0.8585 20 0.0005
2 Control 0.6820 100 0.0001
2 Treated 0.6992 100 0.001

Table 1: Hyperparameter tuning results processes 0-2 for both control and treated models. ”Hidden
Layer Size” refers to the GCN convolution layer’s hidden size. For all models, an optimizer of Adam
was used.

for the process 2 models we used a learning rate of 5e-4 and a hidden layer size of 100. We report
average testing AUPRC across 10 different starting seeds in figure
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Figure 2: The average testing AUPRC across 10 different starting seeds, with standard deviation
reported. All models were run using the hyperparameters described above.

6.3 Gene-Gene Interactions

We plotted the 50 most important edges within the subgraph before and after training the model.
Below are the results for all six models. For all graphs, the node size is relative to the node degree,
that is how many edges the node has. The edges are colored based on weight value, with a darker
color indicating a higher weight and therefore importance. In the following panels, the subgraph



on the left is the 50 most important edges from the g value correlation matrix initialization, and
the subgraph on the right is the 50 most important edges in the graph structure after training. See
Figures [} B} B [1 5

Based on this analysis, we sought to understand if the most important genes were solely a result
of having the greatest gene expression value. We plotted the average expression value for all genes
in the data. The results are summarized in [3|and they indicate that gene expression values do drive
the importance for some genes.
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Figure 3: Left: control expression values, Right: treated expression values - treated genes are in
dark blue. These plots indicate that gene expression value do drive the importance for some genes.
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Figure 4: Process 0 control subgraph results indicate that the MALAT1 gene plays a vital role in
predicting cell state from gene expression values. Left: 50 most important edges in graph from g
value correlation matrix initialization. Right: 50 most important edges in graph after training.

6.4 Top Gene Analysis

Based on the gene-gene interaction subgraphs produced, we sought to analyze the central genes
after training to understand their role in GBM. Central to process 0 - both control and treated - was
MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) (see Figure . MALAT1 is
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Figure 5: Process 0 treated subgraph results indicate that the MALAT1 gene plays a vital role in
predicting cell state from gene expression values. Left: 50 most important edges in graph from g
value correlation matrix initialization. Right: 50 most important edges in graph after training.
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Figure 6: Process 1 control subgraph results indicate that the TIMP3 gene plays a vital role in
predicting cell state from gene expression values. Left: 50 most important edges in graph from g
value correlation matrix initialization. Right: 50 most important edges in graph after training.

a tumor promoter[2]. Previous studies have found that high levels of MALAT1 expression confers a
poor therapeutic efficacy, and inhibiting MALAT1 levels could lead to improved therapeutic results
in GBM patients [4].

Central to the process 1 control model was the TIMP3 (tissue inhibitor of metalloproteinase-3)
gene (see Figure @ Higher TIMP3 expression levels are correlated with better overall survival
and prognosis in GBM patients. TIMP genes regulate many cellular processes by controlling
extracellular matrix degradation [g].
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Figure 7: Process 1 treated subgraph results indicate that the COL1A2 gene plays a vital role in
predicting cell state from gene expression values. Left: 50 most important edges in graph from g
value correlation matrix initialization. Right: 50 most important edges in graph after training.
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Figure 8: Process 2 control subgraph results indicate that the TUBA1B gene, along with the ETV1
and HMGB1 genes, play a vital role in predicting cell state from gene expression values. While
the initialized figure indicates there are two disconnected subgraphs, after training one connected
subgraph is produced with the most important edges. Left: 50 most important edges in graph from
g value correlation matrix initialization. Right: 50 most important edges in graph after training.

For the process 1 treated model, a different gene is at the center of its predictions: COL1A2
(collagen alpha-2(I) chain) (see Figure [7)). This gene provides instructions for making part of
a large molecule called type I collagen. An extracellular matrix, such as one made of collagen,
is an essential part of the tumor microenvironment. Previous studies have found that COL1A2
is significantly higher in the blood of patients with GBM than healthy patients. Furthermore,
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Figure 9: Process 2 treated subgraph results indicate that the TUBA1B gene plays a vital role
in predicting cell state from gene expression values. Unlike process 2 control, there are still two
disconnected subgraphs with the highest edge weights after training. It is important to note that,
in the post-training figure, the smaller subgraph in the bottom right contains the highest edge
weights (indicated by darker edge color). Therefore, the CAV1, MGP, COL1A2, and TIMP3 genes
are considered important to the process 2 treated model. Left: 50 most important edges in graph
from g value correlation matrix initialization. Right: 50 most important edges in graph after
training.

inhibition of COL1A2 suppresses GSC proliferation [21].

Lastly, central to both the process 2 control and treated models is the gene TUBA1B (tubulin
alpha-1B) (see Figure [§] [9). TUBAI1B has been shown to have increased expression in patients
with GBM, and the expression increases with GBM grade. Previous studies have found TUBA1B
to be a significant predictor of poor overall survival and prognosis in patients with GBM. [7]

6.5 Downstream Pathway Analysis

Model Robustness To assess the robustness of the models, we ran each of the six models above
10 times with a different starting seed. We recorded the highest 50 edge weights and corresponding
edges, and determined how often that edge appeared in each of the 10 runs. For the downstream
pathway analysis, we used the genes which corresponded to edges that appeared as a top 50 edge
with 70% certainty. In other words, the edges that appeared in 7 out of the 10 runs.

Analysis We conducted downstream pathway analysis for all six models separately. To construct
the gene set, we first determined the top 50 edge weights after training that appeared with a
certainty greater than 70%. We did this using the robustness analysis detailed above. Then, for
those edges we selected the genes the edges connected and used those genes to construct the gene
set. We used Enrichr tool, which is an online interactive tool for gene list enrichment analysis
[3, 15, 23]. We used the Hallmark gene set for this analysis, which was created by researchers at
The Broad Institute and represents and summarizes well-defined biological states and processes.
The results from this analysis are summarized in Figure There were no significant differences

10



in the results comparing the process 0 control and treated models, and also comparing the process
1 control and treated models. However, for process 2 we found that genes driving homeostasis are
dominant in the process 2 control top genes, and genes driving cell proliferation are dominant in
the in process 2 treated top genes. These findings are significant as they indicate the model is
learning the genetic differences between the control and treated genes for process 2.
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MSigDB Hallmark 2020
Myc Targets V1 *1.15e-05

Epithelial Mesenchymal Transition *1.54e-04
PI3K/AKT/mTOR Signaling *2.44e-03
mTORC1 Signaling 1.44e-02

Oxidative Phosphorylation 1.44e-02
Cholesterol Homeostasis 1.53e-02

Protein Secretion 2.5e-02

Coagulation 4.84e-02

Fatty Acid Metabolism 6.15e-02

Hedgehog Signaling 8.79e-02
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(a) Results for the p0 control and treated top-
genes - both had the same results. The top path-
way for both models is Myc_Targets_V1. Myec is
a proto-oncogene, which are genes that normally
help cells grow and divide to make new cells, or
to help cells stay alive

MSigDB Hallmark 2020
Epithelial Mesenchymal Transition *1.e-09

Apoptosis *4.25e-09

IL-2/STATS Signaling *7.8e-06
Hypoxia *8.02e-06

Glycolysis *1.15e-04

Coagulation *3.34e-04

Estrogen Response Late *1.34e-03
Apical Junction *1.34e-03
Angiogenesis *3.37e-03

UV Response Dn #4.99e-03
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~logao(p-value)

(b) Results for the pl control top genes. The top
pathway is Epithelial Mesenchymal_Transition,
which are genes involved in wound healing, fi-
brosis and metastasis

MSigDB Hallmark 2020
Cholesterol Homeostasis *3.18e-04

Apical Junction *4.45e-04

Complement *4.45e-04

Myogenesis *5.52e-03

Epithelial Mesenchymal Transition *5.52e-03
Protein Secretion 1.29e-02

Coagulation 2.56e-02

Apoptosis 3.39e-02

mTORC1 Signaling 5.02e-02

Myc Targets V1 5.02e-02

]
—logio(p-value)

(d) Results for the p2 control top genes. The
top pathway is Cholesterol_ Homeostasis, which
are genes involved in cholesterol homeostasis

MSigDB Hallmark 2020
Epithelial Mesenchymal Transition *2.48e-13

Apoptosis *4.09e-08

IL-2/STAT5 Signaling *5.85e-05
Hypoxia *5.99e-05

Fatty Acid Metabolism *3.32e-04
Cholesterol Homeostasis *5.03e-04
Apical Junction *8.07e-04
Complement *8.07e-04
Angiogenesis *2.59e-03

Coagulation *3.03e-03

F 7 3
~logao(p-value)

(¢) Results for the pl treated top genes.
The top pathway 1is also the Epithe-
lial_Mesenchymal_Transition, which are genes
involved in wound healing, fibrosis and metasta-
sis

MSigDB Hallmark 2020
Myc Targets V1 *6.68e-10

Oxidative Phosphorylation *9.34e-05

E2F Targets *9.34e-05

Apoptosis *5.07e-04

G2-M Checkpoint *1.14e-03

Epithelial Mesenchymal Transition *1.14e-03
UV Response Dn *4.42e-03

Coagulation 4.01e-02

Adipogenesis 7.73e-02

mTORC1 Signaling 7.73e-02
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(e) Results for the p2 treated top genes. The
top pathway is Myc_Targets_V1. Myc is a proto-
oncogene, which are genes that normally help
cells grow and divide to make new cells, or to
help cells stay alive

Figure 10: Gene set enrichment analysis results for all six models. Genes driving homeostasis are
dominant in the process 2 control top genes, and genes driving cell proliferation are dominant in

the in process 2 treated top genes.



7 Conclusions

We developed a GNN to predict cell state energy given gene expression data. We analyzed the gene-
gene interactions most important to the model predictions, and conducted a downstream pathway
analysis to understand their functions. Our findings of the most important genes can help inform
future therapeutics for GBM.

We plan to test interpretation methods on the GNN in the future. As GNNs are graph-based,
we are able to view exactly which nodes are most important to the predictions, compared to other
black-box model architectures. Therefore, we plan to validate our findings of the most important
genes by using state-of-the-art methods for GNN interpretation, such as GNNExplainer and Global
Counterfactual Explainer for GNNs [24], 12]. This will further help validate which genes are most
important for biologists to study.

In the future, we hope to incorporate more robust uncertainty modeling methods into the
predictions. One method of doing so is by using Bayesian inference (BI), a mathematical model
that allows us to determine the uncertainty in our predictions. BI is well suited for models that
are trained on small datasets, which applies in this case as the data is only from four patients.
Furthermore, BI reduces the risk of overconfident predictions [I0]. These false predictions could
have detrimental impacts in the areas of medical diagnoses and treatments.

Ultimately, this project has implications for biologists to reduce the time, money, and labor
spent manually labeling this cell state energy data. By training on a variety of different patient’s
data, the model can also learn generalizability which can allow it to overcome the batch effect,
which is a phenomenon in biology when non-biological factors in an experiment cause changes in
the data produced by the experiment. This can have large potential in expanding the amount of
labeled data available so researchers can better understand GBM and discover novel therapies to
impact cancer treatment.
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